Published Online: 24 September 2019
Accepted: September 2019
Appl. Phys. Lett. 115, 131902 (2019); https://doi.org/10.1063/1.5116263
The transient grating spectroscopy is widely used to determine the diffusion coefficients of valley excitons or spins in low-dimensional semiconductor materials. Here, we present the investigation on the diffusion dynamics of the valley excitons in a high-quality large-scale mechanically exfoliated tungsten diselenide (WSe2) monolayer by this technique at room temperature. Collinearly polarized laser excitation (at a photon energy of 1.66 eV resonant to the energy of valley A-excitons) was used to introduce a spatially periodic density of valley excitons. Through probing the spatial and temporal evolution of the initial density of valley excitons, we find that the signals of transient grating exhibit an nonexponential decay, and its decay rate is independent of the period of optical grating Λ. Combined with the transient reflection measurements, we show that the exciton-exciton annihilation plays a key role in decay processes of the transient grating spectroscopy, which results in the distortion of sinusoidal gratings. Based on Einstein relationship, we estimate the diffusion coefficient of valley exciton DX = 0.7 cm2/s.
This work was supported by the National Science Foundation of China (Grant No. 11574357, 11974386, 61888102, 61390503, 11874405), the National Basic Research Program of China (Grant 2015CB921001), the National Key Research Program of China (Grant No. 2016YFA0300601), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDJ-SSW-SLH042), and the Youth Innovation Promotion Association of CAS (2019007).
  1. 1. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012). https://doi.org/10.1038/nnano.2012.96, Google ScholarCrossref
  2. 2. W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406 (2008). https://doi.org/10.1103/PhysRevB.77.235406, Google ScholarCrossref
  3. 3. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012). https://doi.org/10.1038/nnano.2012.95, Google ScholarCrossref
  4. 4. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887 (2012). https://doi.org/10.1038/ncomms1882, Google ScholarCrossref
  5. 5. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016). https://doi.org/10.1038/natrevmats.2016.55, Google ScholarCrossref
  6. 6. G. Wang, X. Marie, B. L. Liu, T. Amand, C. Robert, F. Cadiz, P. Renucci, and B. Urbaszek, Phys. Rev. Lett. 117, 187401 (2016). https://doi.org/10.1103/PhysRevLett.117.187401, Google ScholarCrossref
  7. 7. Z. Ye, D. Sun, and T. F. Heinz, Nat. Phys. 13, 26 (2017). https://doi.org/10.1038/nphys3891, Google ScholarCrossref
  8. 8. Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, Nat. Nanotechnol. 11, 598 (2016). https://doi.org/10.1038/nnano.2016.49, Google ScholarCrossref
  9. 9. G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys. 11, 148 (2015). https://doi.org/10.1038/nphys3201, Google ScholarCrossref
  10. 10. S. A. Vitale, D. Nezich, J. O. Varghese, P. Kim, N. Gedik, P. Jarillo-Herrero, D. Xiao, and M. Rothschild, Small 14, 1801483 (2018). https://doi.org/10.1002/smll.201801483, Google ScholarCrossref
  11. 11. C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, Phys. Rev. B 90, 161302 (2014). https://doi.org/10.1103/PhysRevB.90.161302, Google ScholarCrossref
  12. 12. C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao, and K. Gundogdu, Nano Lett. 14, 202–206 (2014). https://doi.org/10.1021/nl403742j, Google ScholarCrossref
  13. 13. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805, Google ScholarCrossref
  14. 14. T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012). https://doi.org/10.1103/PhysRevB.85.205302, Google ScholarCrossref
  15. 15. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012). https://doi.org/10.1103/PhysRevB.86.115409, Google ScholarCrossref
  16. 16. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w, Google ScholarCrossref
  17. 17. F. Cadiz, C. Robert, E. Courtade, M. Manca, L. Martinelli, T. Taniguchi, K. Watanabe, T. Amand, A. C. H. Rowe, D. Paget, B. Urbaszek, and X. Marie, Appl. Phys. Lett. 112, 152106 (2018). https://doi.org/10.1063/1.5026478, Google ScholarScitation, ISI
  18. 18. M. Kulig, J. Zipfel, P. Nagler, S. Blanter, C. Schüller, T. Korn, N. Paradiso, M. M. Glazov, and A. Chernikov, Phys. Rev. Lett. 120, 207401 (2018). https://doi.org/10.1103/PhysRevLett.120.207401, Google ScholarCrossref
  19. 19. Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, ACS Nano 8, 2970–2976 (2014). https://doi.org/10.1021/nn500277y, Google ScholarCrossref
  20. 20. F. Mahmood, Z. Alpichshev, Y.-H. Lee, J. Kong, and N. Gedik, Nano Lett. 18, 223–228 (2018). https://doi.org/10.1021/acs.nanolett.7b03953, Google ScholarCrossref
  21. 21. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, Nano Lett. 14, 5625–5629 (2014). https://doi.org/10.1021/nl5021975, Google ScholarCrossref
  22. 22. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, Phys. Rev. B 89, 125427 (2014). https://doi.org/10.1103/PhysRevB.89.125427, Google ScholarCrossref
  23. 23. G. Wang, B. L. Liu, A. Balocchi, P. Renucci, C. R. Zhu, T. Amand, C. Fontaine, and X. Marie, Nat. Commun. 4, 2372 (2013). https://doi.org/10.1038/ncomms3372, Google ScholarCrossref
  24. 24. N. Gedik, J. Orenstein, R. Liang, D. A. Bonn, and W. N. Hardy, Science 300, 1410–1412 (2003). https://doi.org/10.1126/science.1083038, Google ScholarCrossref
  25. 25. M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Phys. Rev. B 47, 15776–15788 (1993). https://doi.org/10.1103/PhysRevB.47.15776, Google ScholarCrossref
  26. 26. T. Yu and M. W. Wu, Phys. Rev. B 89, 205303 (2014). https://doi.org/10.1103/PhysRevB.89.205303, Google ScholarCrossref
  27. 27. M. I. D′yakonov and V. I. Perel′, Sov. Phys. JETP 33, 1053–1059 (1971). Google Scholar
  28. 28. M. I. D′yakonov and V. I. Perel′, Sov. Phys. Solid State 13, 3023–3026 (1972). Google Scholar
  29. 29. M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, Phys. Rev. B 89, 201302 (2014). https://doi.org/10.1103/PhysRevB.89.201302, Google ScholarCrossref
  30. 30. C. Jin, J. Kim, M. I. B. Utama, E. C. Regan, H. Kleemann, H. Cai, Y. Shen, M. J. Shinner, A. Sengupta, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, Science 360, 893–896 (2018). https://doi.org/10.1126/science.aao3503, Google ScholarCrossref
  31. Published under license by AIP Publishing.